Effective Latent Differential Equation Models via Attention and Multiple Shooting

Germán Abrevaya · Mahta Ramezanian-Panahi · Jean-Christophe Gagnon-Audet · Pablo Polosecki · Irina Rish · Silvina Ponce Dawson · Guillermo Cecchi · Guillaume Dumas

Video

Paper PDF

Thumbnail of paper pages

Abstract

Scientific Machine Learning (SciML) is a burgeoning field that synergistically combines domain-aware and interpretable models with agnostic machine learning techniques. In this work, we introduce GOKU-UI, an evolution of the SciML generative model GOKU-nets. GOKU-UI not only broadens the original model's spectrum to incorporate other classes of differential equations, such as Stochastic Differential Equations (SDEs), but also integrates attention mechanisms and a novel multiple shooting training strategy in the latent space. These modifications have led to a significant increase in its performance in both reconstruction and forecast tasks, as demonstrated by our evaluation on simulated and empirical data. Specifically, GOKU-UI outperformed all baseline models on synthetic datasets even with a training set 16-fold smaller, underscoring its remarkable data efficiency. Furthermore, when applied to empirical human brain data, while incorporating stochastic Stuart-Landau oscillators into its dynamical core, our proposed enhancements markedly increased the model's effectiveness in capturing complex brain dynamics. GOKU-UI demonstrated a reconstruction error five times lower than other baselines, and the multiple shooting method reduced the GOKU-nets prediction error for future brain activity up to 15 seconds ahead. By training GOKU-UI on resting state fMRI data, we encoded whole-brain dynamics into a latent representation, learning a low-dimensional dynamical system model that could offer insights into brain functionality and open avenues for practical applications such as the classification of mental states or psychiatric conditions. Ultimately, our research provides further impetus for the field of Scientific Machine Learning, showcasing the potential for advancements when established scientific insights are interwoven with modern machine learning.