Despite their great practical successes, the understanding of neural network behavior is still a topical research issue. In particular, the class of functions learnable in the context of a finite precision configuration is an open question. In this paper, we propose to study the limits of gradient descent when such a configuration is set for the class of Simple Recurrent Networks (SRN). We exhibit conditions under which the gradient descend will provably fail. We also design a class of SRN based on Deterministic finite State Automata (DFA) that fulfills the failure requirements. The definition of this class is constructive: we propose an algorithm that, from any DFA, constructs a SRN that computes exactly the same function, a result of interest by its own.